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Background. Guillain-Barré Syndrome (GBS) is a potentially fatal autoimmune neurological disorder. The severity varies among
the four main subtypes, named as Acute Inflammatory Demyelinating Polyneuropathy (AIDP), Acute Motor Axonal Neuropathy
(AMAN), AcuteMotor Sensory Axonal Neuropathy (AMSAN), andMiller-Fisher Syndrome (MF). A proper subtype identification
may help to promptly carry out adequate treatment in patients. Method. We perform experiments with 15 single classifiers in
two scenarios: four subtypes’ classification and One versus All (OvA) classification. We used a dataset with the 16 relevant
features identified in a previous phase. Performance evaluation is made by 10-fold cross validation (10-FCV). Typical classification
performance measures are used. A statistical test is conducted in order to identify the top five classifiers for each case. Results. In
four GBS subtypes’ classification, half of the classifiers investigated in this study obtained an average accuracy above 0.90. In OvA
classification, the two subtypes with the largest number of instances resulted in the best classification results. Conclusions. This
study represents a comprehensive effort on creating a predictive model for Guillain-Barré Syndrome subtypes. Also, the analysis
performed in this work provides insight about the best single classifiers for each classification case.

1. Introduction

Guillain-Barré Syndrome (GBS) is an autoimmune neuro-
logical disorder characterized by a fast evolution; usually it
goes from a few days up to four weeks. Complications of
GBS vary among subtypes, which can be mainly Acute
Inflammatory Demyelinating Polyneuropathy (AIDP), Acute
Motor Axonal Neuropathy (AMAN), Acute Motor Sensory
Axonal Neuropathy (AMSAN), and Miller-Fisher Syndrome
(MF) [1, 2].

Current GBS subtype classification method consists of a
clinical inspection by physicians guided by criteria estab-
lished by specialists. This initial diagnostic is reinforced by
neuroconduction tests, which help to differentiate among
subtypes [1]. This current method implies performing long,
expensive, and annoying tests. Some previous efforts in GBS
have been focused to predict outcome at 6months in the acute

phase of GBS using clinical characteristics [3], early recog-
nition of poor prognosis [4], and prediction of respiratory
insufficiency [5–7]. No publication to date has been found
of studies using machine learning methods for GBS subtypes
classification.

In this study, we investigate the predictive power of a re-
duced set of only 16 features selected out from an original da-
taset of 365 features.This dataset holds data from 129Mexican
patients and contains the four aforementioned GBS subtypes.
We apply 15 representative single classifiers from diverse
approaches: decision trees (C4.5), instance-based learners
(𝑘NN: 𝑘 nearest neighbor), kernel-based (SVM: Support Vec-
tor Machines), neural networks (SLP, MLP, and RBF-DDA),
and rule induction learners (OneR, JRip), among others.

We performed experiments in three classification scenar-
ios: four GBS subtypes’ classification, OvA (One versus All),
and OvO (One versus One). For clarity purposes and due to
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Table 1: List of features used in this study.

Feature
label Feature name

v22 Symmetry (in weakness)
v29 Extraocular muscles involvement
v30 Ptosis
v31 Cerebellar involvement
v63 Amplitude of left median motor nerve
v106 Area under the curve of left ulnar motor nerve
v120 Area under the curve of right ulnar motor nerve
v130 Amplitude of left tibial motor nerve
v141 Amplitude of right tibial motor nerve

v161 Area under the curve of right peroneal motor
nerve

v172 Amplitude of left median sensory nerve
v177 Amplitude of right median sensory nerve

v178 Area under the curve of right median sensory
nerve

v186 Latency of right ulnar sensory nerve
v187 Amplitude of right ulnar sensory nerve
v198 Area under the curve of right sural sensory nerve

page limitation, in this work we present detailed results of the
first two scenarios. Details of OvO scenario will be available
per reader request.

This study represents a comprehensive effort on creating
a predictive model for GBS subtypes. Also, the analysis
performed in this work provides insight about the best single
classifiers for each classification case. Further experiments
with other algorithms will follow.

This paper is organized as follows. In Section 2, we present
a description of the dataset, the metrics used in the study, a
brief description of the classifiers, the experimental design,
and the tuning procedure of classifiers. In Section 3, we show
and discuss the experimental results. Finally, in Section 4, we
summarize conclusions of the study and also suggest some
future work.

2. Materials and Methods

2.1. Data. The dataset used in this work comprises 129 cases
of patients who received treatment at Instituto Nacional de
Neurologı́a y Neurocirugı́a located in Mexico City. There are
20 AIDP cases, 37 AMAN, 59 AMSAN, and 13 Miller-Fisher
cases. Hence, there are four GBS subtypes in this dataset.

In a previous work [8], we identified a set of 16 relevant
features out of an original 365-feature dataset. The features
are listed in Table 1. Features V22, V29, V30, and V31 are all
clinical and the remaining features come from a nerve
conduction test.Themethod used to identify these 16 features
is briefly described below.

First, we made a preselection of variables from the origi-
nal dataset based on diagnostic criteria for GBS established in
the literature. After preselection, the dataset was left with 156

variables: 121 variables from the nerve conduction test, 4 vari-
ables from the CSF analysis, and 31 clinical variables.We used
a novel method consisting of a combination of Quenching
Simulated Annealing (QSA) and Partitions AroundMedoids
(PAM), named QSA-PAM method. We used a clustering
technique as this method is useful to study the internal
structure of data to disclose the existence of groups of homo-
geneous data. We know in advance of the existence of four
GBS subtypes or classes in our dataset; therefore, we took
advantage of this information to identify relevant features
that allow building four clusters, each corresponding to aGBS
subtype. Purity metric was used to determine the quality of
each cluster. The highest purity is reached when clusters con-
tain the largest number of elements of the same type and the
fewest number of elements of a different type.

QSA [9] is a version of Simulated Annealing (SA), which
is a general purpose randomized metaheuristic that finds
good approximations to the optimal solution for large combi-
natorial problems. QSA was used to select different random
feature subsets from the dataset. New datasets created using
these feature subsets were used as input to PAM to build four
clusters. Finally, purity of clusters was measured. Sixteen fea-
tures from the original dataset were encountered relevant for
identifying GBS subtypes with the highest purity, 0.8992.

2.2. Single Classifiers. In this study, we include results from
15 representative single classifiers from diverse approaches:
decision trees (C4.5), instance-based learners (𝑘NN: 𝑘nearest
neighbor), kernel-based (SVM: Support Vector Machines),
neural networks (SLP, MLP, and RBF-DDA), rule induction
learners (OneR, JRip), and logistic regression, among others.
The complete list is given in Table 2, where the tuning param-
eters are also shown. A detailed description of these classifiers
can be found in [10–18]. Experiments from 𝑘NN, SVM, and
C4.5 were previously published [19, 20]. In this work, we
used results from these classifiers to make a comparative
analysis among all the 15 classifiers. From each approach, we
selected the best classifiers based on their performance. The
idea is to initially explore different single classifiers to analyze
their performance in GBS subtype classification. From the
machine learning perspective, it is always useful to analyze
the classification power of different classifiers in diverse tasks.

2.3. Performance Measures. We used typical performance
measures in machine learning such as AUC (Area under
the Curve), average accuracy and balanced accuracy. Average
accuracy is used in fourGBS subtypes’ classification, since it is
a more suitable measure for multiclass classification prob-
lems. Balanced accuracy is used in OvA classification, be-
cause it is a better performance estimate of imbalanced data-
sets.

2.4. Experimental Design. We used the 16-feature subset,
described in Section 2.1, for experiments. We added the GBS
subtype as class variable. Finally, we created a dataset contain-
ing the 129 instances and 17 features. We used 10-fold cross
validation (10-FCV) evaluation schemes in all cases.We chose
this validation scheme since it ismore suitable due to our lim-
ited dataset. We performed 30 10-FCV runs, for each method
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Table 2: List of single classifiers used in this study. Binary Logistic Regression (BLR) used in OvA and OvO classifications. Multinomial
Logistic Regression (MLR) used in four GBS subtypes’ classification.

Single classifier Approach Tuning parameter
𝑘NN Instance-based 𝑘, 𝑑
SVM Linear kernel (SVMLin) Kernel-based 𝐶
SVM Polynomial kernel (SVMPoly) Kernel-based 𝐶, degree, 𝜎 (𝛾), coef
SVM Gaussian kernel (SVMGaus) Kernel-based 𝐶, 𝜎 (𝛾)
SVM Laplacian kernel (SVMLap) Kernel-based 𝐶, 𝜎 (𝛾)
C4.5 Decision tree NA
Single Layer Perceptron (SLP) Neural network Size, decay
Multilayer Perceptron (MLP) Neural network Size
Radial Basis Function ANN (RBF-ANN) Neural network Negative threshold
JRip Rule induction NumOpt
OneR Rule induction NA
Naive Bayes Bayesian NA
Binary Logistic Regression (BLR) Regression NA
Multinomial Logistic Regression (MLR) Regression NA
Linear Discriminant Analysis (LDA) Discriminant Analysis NA

listed in Section 2.2. For each fold we computed average
accuracy (balanced accuracy for OvA) and AUC (multiclass
AUC for four GBS subtype classification). After the 10-
fold, we calculated the average of each measure. Finally, we
averaged each of these quantities across the 30 runs. In each
10-FCV run, we set a different seed to ensure different splits of
train and test sets across runs, then we had all classifiers use
the same seed at the same run. These seeds were generated
using Mersenne-Twister pseudo-random number generator
[21].

We performed experiments in three classification scenar-
ios: four GBS subtypes’ classification, OvA, and OvO. For
clarity purposes and length of paper, in this work we present
detailed results of the first two scenarios. Details of OvO
scenario will be available per reader request.

In the first scenario, the four GBS subtypes were included
in the dataset at the same time, that is, AIDP, AMAN,
AMSAN, and MF. OvA strategy consists of building 𝑛 binary
classifiers. In this particular work, we made four different
OvA classifications, as the number of GBS subtypes in the
dataset. Hence, we created four new datasets. In each dataset,
the instances of one class were marked as the positive cases
and the instances of the remaining classes weremarked as the
negative cases. OvO strategy consists of building 𝑛(𝑛 −
1)/2 binary classifiers. In this particular work, we made six
different OvO classifications. Therefore, we created six new
datasets, as many combinations of pairs of GBS subtypes.
We aimed to investigate how well classifiers distinguish each
subtype with respect to the other subtypes. Each dataset con-
tained instances of only two GBS subtypes, one class marked
as the positive case and all remaining classes as the negative
case.

3. Parameter Optimization

MLP, SLP, RBF-DDA, and JRip each require a particular
parameter optimization, as mentioned in Section 2.2. These
parameters were automatically optimized by each method in

each one of the 30 runs; therefore the best parameters for each
run were used for classification.

4. Results

4.1. Four GBS Subtypes’ Classification. In this section, we
show the classification results of the four GBS subtypes. All
tables show the average results of each classifier across 30
runs. All figures show the average accuracy of each classifier
across 30 runs. In both cases, the standard deviation of each
metric is shown.

Table 3 shows the four GBS subtypes’ classification. Six
classifiers, almost half of all the classifiers, obtained an aver-
age accuracy above 0.90.The best classifiers were 𝑘NN, SVM-
Lap, SVMPoly, SVM SVMGaus, C4.5, and SVMLin. Five of
the remaining classifiers obtained an average accuracy
around 0.89. Two around 0.88 and OneR showed the worst
performancewith an average accuracy under 0.80 and overall
poor results in all metrics.

As Figure 1 show, most of the classifiers obtained an
average accuracy around 0.90. Six of them were above this
number, and in average, the standard deviation was around
0.01.

4.2. OvA Classification Results. In this section, we describe
the results of OvA classification. That is, AIDP versus ALL,
AMAN versus ALL, AMSAN versus ALL, and MF versus
ALL. As mentioned before, we used the balanced accuracy as
our base metric in OvA classification scenario. All tables and
figures show the average results of each classifier across 30
runs. In all cases, the standard deviation of each metric is
shown.

Table 4 shows the average results across 30 runs in OvA
classification. In AIDP versus ALL, four classifiers obtained
a balanced accuracy above 0.80: 𝑘NN, C4.5, MLP, and
SVMLap. In AMAN versus ALL, nine classifiers obtained a
balanced accuracy above 0.90; four of them were SVM with
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Table 3: Four GBS subtypes’ classification. The standard deviation of each metric is shown in normal font.

Classifier Optimal parameters Average accuracy Multiclass AUC

SVMPoly 𝑑 = 6 coef = 1 0.9235 0.8985
𝑔 = 0.01 𝐶 = 1 0.0080 0.0199

C4.5 0.9211 0.8857
0.0109 0.0242

SVMLap 𝑠 = 0.01 𝐶 = 50
0.9201 0.8712
0.0072 0.0240

SVMGaus 𝑠 = 0.01 𝐶 = 10
0.9193 0.8897
0.0067 0.0221

𝑘NN 𝑘 = 14 𝑑 = 1
0.9179 0.8783
0.0041 0.0188

SVMLin 𝐶 = 1
0.9175 0.8632
0.0096 0.0232

JRip 0.8999 0.8729
0.0143 0.0291

Naive Bayes 0.8986 0.8632
0.0079 0.0244

MLP 0.8974 0.8514
0.0122 0.0257

SLP 0.8972 0.8452
0.0147 0.0230

MLR 0.8926 0.8405
0.0082 0.0279

LDA 0.8806 0.8256
0.0083 0.0223

RBF-DDA 0.8797 0.8249
0.0079 0.0287

OneR 0.7744 0.7528
0.0164 0.0249

all different kernels. In AMSANversus ALL, the best five clas-
sifiers were 𝑘NN, C4.5, SVMLap, SLP, and RBF-DDA. They
obtained a balanced accuracy above 0.86. MF versus ALL
obtained the worst classification performance.

As shown in Figure 2, AMSAN versus ALL showed the
most stable performance both in balanced accuracy and in
standard deviation across 30 runs. The opposite case was MF
versus ALL. AMAN versus ALL obtained the highest classi-
fication performance; AMSAN versus ALL was the second
best.

4.3. Statistical Analysis. We investigated if there was any sta-
tistically significant difference in average accuracy among the
top five classifiers in average accuracy (balanced accuracy in
OvO and OvA scenarios) across 30 runs, in all classification
scenarios. For this analysis, we used the Friedman test. An
additional post hoc analysis using Holms’ correction was
performed in cases where null hypothesis was rejected. We
selected Friedman test since it is suitable for the type of
analysis we performed and also because it is a nonparametric
test; that is, no assumption about data distribution is needed.
Holm’s correction is used for controlling the family-wise error

in multiple hypothesis testing. Despite other correction pro-
cedures, we selected Holm’s because it is a powerful method
and it makes no additional assumption about the hypotheses
tested. More details about these tests can be found in [22].

Post hoc analysis uses an alpha∗ parameter, which is the
modified alpha value equal to alpha/(𝑘−𝑖), where alpha is the
significance level, 𝑘 is the number of classifiers, and 𝑖 is the
rank. In all tests, we used an alpha = 0.05.

4.3.1. Four GBS Subtypes’ Classification. In Table 5 we show
the Friedman test results of the comparison among the top
five classifiers in average accuracy across 30 runs, in four
classes classification. The complete list of the top five clas-
sifiers for each case is shown in Table 6. No statistically
significant difference among the top five classifiers in average
accuracy across 30 runs was found.

In all cases, we used as our null hypothesis𝐻o: there is no
statistically significant difference in the average accuracy
among the top five classifiers across 30 runs, and we used as
our alternative hypothesis 𝐻

1
: there is a statistically signif-

icant difference in the average accuracy among the top five
classifiers across 30 runs.
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Table 4: OvA classification results. The standard deviation of each metric is shown in normal font.

AMAN versus ALL AMSAN versus ALL AIDP versus ALL MF versus ALL

Classifier Balanced
accuracy AUC Classifier Balanced

accuracy AUC Classifier Balanced
accuracy AUC Classifier Balanced

accuracy AUC

SVMPoly 0.9498 0.9498
𝑘NN 0.8951 0.8951 MLP 0.8183 0.8183 Naive Bayes 0.8956 0.8956

0.0135 0.0135 0.0124 0.0124 0.0204 0.0204 0.0252 0.0252

SVMLap 0.9459 0.9459 C4.5 0.8860 0.8860 SVMLap 0.8158 0.8158 JRip 0.8395 0.8395
0.0173 0.0173 0.0163 0.0163 0.0214 0.0214 0.0424 0.0424

𝑘NN 0.9441 0.9441 SVMLap 0.8767 0.8767 C4.5 0.8083 0.8083 LDA 0.8218 0.8218
0.0067 0.0067 0.0189 0.0189 0.0226 0.0226 0.0371 0.0371

SVMGaus 0.9400 0.9400 SLP 0.8647 0.8647
𝑘NN 0.8012 0.8012 SVMGaus 0.8168 0.8168

0.0177 0.0177 0.0229 0.0229 0.0135 0.0135 0.0397 0.0397

MLP 0.9256 0.9256 RBF-DDA 0.8629 0.8629 LDA 0.7928 0.7928 SVMLin 0.8150 0.8150
0.0180 0.0180 0.0138 0.0138 0.0138 0.0138 0.0438 0.0438

SLP 0.9244 0.9244 MLP 0.8527 0.8527 SVMGaus 0.7807 0.7807 C4.5 0.7971 0.7971
0.0193 0.0193 0.0180 0.0180 0.0222 0.0222 0.0446 0.0446

C4.5 0.9224 0.9224 SVMPoly 0.8454 0.8454 JRip 0.7800 0.7800 SVMPoly 0.7711 0.7711
0.0199 0.0199 0.0183 0.0183 0.0403 0.0403 0.0420 0.0420

SVMLin 0.9046 0.9046 JRip 0.8420 0.8420 SLP 0.7753 0.7753
𝑘NN 0.7609 0.7609

0.0244 0.0244 0.0212 0.0212 0.0323 0.0323 0.0426 0.0426

RBF-DDA 0.9033 0.9033 SVMGaus 0.8403 0.8403 RBF-DDA 0.7715 0.7715 MLP 0.7579 0.7579
0.0194 0.0194 0.0184 0.0184 0.0254 0.0254 0.0695 0.0695

LDA 0.8902 0.8902 Naive Bayes 0.8112 0.8112 BLR 0.7588 0.7588 SVMLap 0.7556 0.7556
0.0125 0.0125 0.0140 0.0140 0.0233 0.0233 0.0422 0.0422

Naive Bayes 0.8794 0.8794 BLR 0.7969 0.7969 SVMPoly 0.7578 0.7578 SLP 0.7211 0.7211
0.0182 0.0182 0.0188 0.0188 0.0228 0.0228 0.0659 0.0659

BLR 0.8556 0.8556 LDA 0.7963 0.7963 SVMLin 0.7552 0.7552 BLR 0.7211 0.7211
0.0197 0.0197 0.0152 0.0152 0.0204 0.0204 0.0659 0.0659

JRip 0.8454 0.8454 OneR 0.7925 0.7925 Naive Bayes 0.7432 0.7465 OneR 0.6641 0.6641
0.0312 0.0312 0.0191 0.0191 0.0100 0.0155 0.0403 0.0403

OneR 0.6313 0.6339 SVMLin 0.7916 0.7922 OneR 0.6497 0.6517 RBF-DDA 0.5071 0.5071
0.0404 0.0413 0.0192 0.0195 0.0486 0.0489 0.0288 0.0288

Table 5: Friedman test results of the comparison among top five
classifiers in average accuracy across 30 runs in four GBS subtypes’
classification.

Friedman Statistic Critical value 𝐻o
1.985 2.45 Accepted

Table 6: Average ranks of the top five classifiers in four GBS
subtypes’ classification.

Classifiers compared
SVMPoly C4.5 SVMLap SVMGauss 𝑘NN

Average ranks 2.47 2.87 2.87 3.38 3.42

In Table 6 we show the average ranks for the top five
classifiers in four GBS subtypes’ classification. As mentioned
before, no statistically significant difference among the top
five classifiers was found.

Table 7: Post hoc test with Holm’s correction of the top five
classifiers in four GBS subtype classification.

Classifiers compared 𝑝 value
SVMPoly versus 𝑘NN 0.020
SVMPoly versus SVMGauss 0.025
SVMPoly versus C4.5 0.327
SVMPoly versus SVMLap 0.327

In Table 7, the results of the post hoc test with Holm’s
correction of the top five classifiers in four GBS subtypes’
classification are shown. No statistically significant difference
between SVMPoly and the other four classifiers was found.

4.3.2. OvA Classification. In Table 8 we show the Friedman
test results of the comparison among the top five classifiers in
balanced accuracy across 30 runs, in OvA classification. The
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Table 8: Friedman test results of the comparison among top five
classifiers in balanced accuracy across 30 runs in OvA classification.

Classes Friedman Statistic Critical value
AIDP versus ALL 8.989 2.45
AMAN versus ALL 8.651 2.45
AMSAN versus ALL 35.869 2.45
MF versus ALL 25.591 2.45
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Figure 1: Average accuracy in four GBS subtypes’ classification.The
standard deviation is shown on top of the bars. A = SVMPoly, B =
C4.5, C = SVMLap, D = SVMGaus, E = 𝑘NN, F = SVMLin, G =
Naive Bayes, H = MLP, I = RBF-DDA, J = SLP, K = JRip, L = LDA,
M =MLR, and N = OneR.

complete list of the top five classifiers for each case is shown in
Table 9. A statistically significant difference among the top
five classifiers in balanced accuracy across 30 runs was found
in all OvA classifications.

In all cases, we used as our null hypothesis 𝐻o: there is
no statistically significant difference in the balanced accuracy
among the top five classifiers across 30 runs, and we used as
our alternative hypothesis 𝐻

1
: there is a statistically signifi-

cant difference in the balanced accuracy among the top five
classifiers across 30 runs.

In Table 9 we show the average ranks for the top five
classifiers in OvA classification. We highlight the ranked first
classifiers only in cases where a statistically significant differ-
ence was found. The ranked first classifiers were MLP (2.17)
for AIDP versus ALL, SVMPoly (2.37) for AMAN versus
ALL, 𝑘NN (1.40) for AMSAN versus ALL, and Naive Bayes
(1.20) for MF versus ALL.

In Table 10, the results of the post hoc test with Holm’s
correction of the top five classifiers in AIDP versus ALL
classification are shown. A statistically significant difference
between MLP and LDA was found, as well as between MLP
and 𝑘NN.

In Table 11, the results of the post hoc test with Holm’s
correction of the top five classifiers in AMAN versus ALL
classification are shown. A statistically significant difference
between SVMPoly and MLP was found.

In Table 12, the results of the post hoc test with Holm’s
correction of the top five classifiers in AMSAN versus ALL
classification are shown. A statistically significant difference
between 𝑘NN and the rest of classifiers was found.

In Table 13, the results of the post hoc test with Holm’s
correction of the top five classifiers in MF versus ALL classi-
fication are shown. A statistically significant difference be-
tween Naive Bayes and the rest of classifiers was found.

5. Discussion

Our objective in this work was to create the highest accurate
predictive model for GBS possible, using the 16 relevant
features identified with QSA-PAM method. This work con-
stitutes the first effort on this topic using machine learning
methods. For this first approach, we used single classifiers.
We selected 15 single classifiers from diverse types: decision
trees (C4.5), instance-based learners (𝑘NN), kernel-based
(SVM), neural networks (SLP,MLP, and RBF-DDA), and rule
induction learners (OneR, JRip), among others.The complete
list is in Section 2.2.We compared their performance in three
types of experiments: four GBS subtypes’ classification, OvA
classification, and OvO classification.

5.1. Four GBS Subtypes’ Classification. The best classifiers
were 𝑘NN and SVM with all different kernels and C4.5. This
result confirms them as a good single classifier. The standard
deviation of the average accuracy was low; this could be a
consequence of the cross validation characteristic in the
sense of reducing the variance by averaging over 𝑘 different
partitions.

OneR obtained the worst performance. One possible
explanation of this situation is that, since OneR generates one
single rule tomake the classification, maybe that single rule is
not enough to classify the four classes in this particular prob-
lem.

After the statistical analysis, no statistical significant
difference in average accuracy among the top five classifiers
across 30 runs was found. One possible explanation for this
last result could be the stability in average accuracy achieved
by the classifiers in 10-FCV.

5.2. OvAClassification. AMANversus ALL showed the high-
est performance in balanced accuracy across 30 runs. The
opposite case was MF versus ALL. AMSAN versus ALL was
the second best. The two classes with the largest number of
instances resulted in the best classification results, that is,
AMANversus ALL andAMSANversus ALL. 𝑘NN,C4.5, and
SVMLap appear in the top five classifiers inmost cases. Naive
Bayes appears as the top classifier forMF versus ALL. Inmost
cases, OneR obtained the worst performance. Overall, the
highest and more stable average results across 30 runs were
obtained in 10-FCV scenario.
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Table 9: Average ranks of the top five classifiers in OvA classification.

Classes Classifiers compared
AIDP versus ALL MLP SVMLap C4.5 𝑘NN LDA
Average ranks 2.17 2.38 2.92 3.53 4.00
AMAN versus ALL SVMPoly SVMLap 𝑘NN SVMGaus MLP
Average ranks 2.37 2.55 2.78 3.02 4.28
AMSAN versus ALL 𝑘NN C4.5 SVMLap SLP RBF-DDA
Average ranks 1.40 2.23 3.22 3.97 4.18
MF versus ALL Naive Bayes JRip LDA SVMGaus SVMLin
Average ranks 1.20 2.92 3.78 3.22 3.88
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Figure 2: Balanced accuracy in OvA classification.The standard deviation is shown on top of the bars. A = SVMPoly, B = C4.5, C = SVMLap,
D = SVMGaus, E = 𝑘NN, F = SVMLin, G = Naive Bayes, H = MLP, I = RBF-DDA, J = SLP, K = JRip, L = LDA, M = BLR, and N = OneR.

After the statistical analysis, two classifiers stood out from
the rest. Naive Bayes resulted as the best classifier for the
minority class versus ALL, that is, MF versus ALL. 𝑘NN was
the best classifier for AMSAN versus ALL.

6. Conclusions

In this work, we aimed at creating the highest accurate pre-
dictive model for GBS possible, using the 16 relevant features

identified with QSA-PAMmethod. This work constitutes the
first effort on this topic using machine learning methods.
Using a reduced set of predictors for GBS subtypes could
result in applying simpler and faster medical tests.

For this first approach, we used single classifiers. We
selected 15 single classifiers from diverse types: decision trees
(C4.5), instance-based learners (𝑘NN), kernel-based (SVM),
neural networks (SLP, MLP, and RBF-DDA), and rule induc-
tion learners (OneR, JRip), among others. The complete list
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Table 10: Post hoc test with Holm’s correction of the top five
classifiers in AIDP versus ALL classification.

Classes Classifiers compared 𝑝 value

AIDP versus ALL

MLP versus LDA 0.000
MLP versus 𝑘NN 0.001
MLP versus C4.5 0.066

MLP versus SVMLap 0.596

Table 11: Post hoc test with Holm’s correction of the top five
classifiers in AMAN versus ALL classification.

Classes Classifiers compared 𝑝 value

AMAN versus ALL

SVMPoly versus MLP 0.000
SVMPoly versus SVMGaus 0.111

SVMPoly versus 𝑘NN 0.307
SVMPoly versus SVMLap 0.653

Table 12: Post hoc test with Holm’s correction of the top five
classifiers in AMSAN versus ALL classification.

Classes Classifiers compared 𝑝 value

AMSAN versus ALL

𝑘NN versus RBF-DDA 0.000
𝑘NN versus SLP 0.000
𝑘NN versus SVMLap 0.000
𝑘NN versus C4.5 0.041

Table 13: Post hoc test with Holm’s correction of the top five
classifiers in MF versus ALL classification.

Classes Classifiers compared 𝑝 value

MF versus ALL

Naive Bayes versus SVMLin 0.000
Naive Bayes versus LDA 0.000

Naive Bayes versus SVMGaus 0.000
Naive Bayes versus JRip 0.000

is in Section 2.2. We compared their performance in three
types of experiments: four GBS subtypes’ classification, OvA
classification, and OvO classification. However, in this work
we only present results from the two first scenarios.

In four GBS subtypes’ classification, we obtained an
average accuracy≥ 0.90with half of classifiers investigated. In
OvA classification, the two classes with the largest number
of instances resulted in the best classification results, that is,
AMANversus ALL andAMSAN versus ALL. Although some
classifiers stand out from the rest, as mentioned in Discus-
sion, each classification scenario obtained a best classifica-
tion method. The analysis performed in this work provides
insight about the best classifiers for each classification case.
Furthermore, from the machine learning perspective, it is
always useful to analyze the classification power of different
classifiers in diverse tasks.

This study is limited with regard to the quantity of
instances present in the dataset. Another limitation is the
absence of other GBS datasets to compare with our results.

As future work, we will investigate the performance of
ensemble methods. Also, we will further tackle the imbal-
anced data problem.
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rology, vol. 67, no. 6, pp. 781–787, 2010.

[6] U. Sundar, E. Abraham, A. Gharat, M. E. Yeolekar, T. Trivedi,
andN.Dwivedi, “Neuromuscular respiratory failure in guillain-
barre syndrome: evaluation of clinical and electrodiagnostic
predictors,” Journal of Association of Physicians of India, vol. 53,
pp. 764–768, 2005.

[7] Z. Hasan, “New combined scoring system for predicting respi-
ratory failure in iraqi patients with guillain-barre syndrome,”
Broad Research in Artificial Intelligence and Neuroscience, vol.
1, no. 4, pp. 5–12, 2010.

[8] J. Canul-Reich, J. Hernández-Torruco, J. Frausto-Soĺıs, and J. J.
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